Semi-supervised Learning by Fuzzy Clustering and Ensemble Learning

نویسندگان

  • Hiroyuki Shinnou
  • Minoru Sasaki
چکیده

This paper proposes a semi-supervised learning method using Fuzzy clustering to solve word sense disambiguation problems. Furthermore, we reduce side effects of semi-supervised learning by ensemble learning. We set classes for labeled instances. The -th labeled instance is used as the prototype of the -th class. By using Fuzzy clustering for unlabeled instances, prototypes are moved to more suitable positions. We can classify a test instance by the Nearest Neighbor (k-NN) with the moved prototypes. Moreover, to reduce side effects of semi-supervised learning, we use the ensemble learning combined the k-NN with initial labeled instances, which is initial prototype, and the k-NN with prototypes moved by Fuzzy clustering.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge

The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...

متن کامل

Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge

The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...

متن کامل

An Improved Semi-Supervised Clustering Algorithm Based on Active Learning

In semi supervised clustering is one of the major tasks and aims at grouping the data objects into meaningful classes (clusters) such that the similarity of objects within clusters is maximized and the similarity of objects between clusters is minimized. The dataset sometimes may be in mixed nature that is it may consist of both numeric and categorical type of data. Naturally these two types of...

متن کامل

Combining Classifier Guided by Semi-Supervision

The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...

متن کامل

Combining Classifier Guided by Semi-Supervision

The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004